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Figure 1. AfS(1—40) with sites for reductive alkylation iBOLD (Asp
1, Lys 16, and Lys 28)0pen circle§O) andclosed circle{®) correspond
to cleavage-sites for endoproteinase Glu-C, and pepsgpéctiely).
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Alzheimer’s disease amyloid fibrils are composed of the self-
assembled 4043 residue peptide A (Figure 1). Solving the

most desirable criteria for modification protocols include high
efficiency, quantitative yields, and mild reaction conditions (to
avoid altering the fibril structure). A suitable protocol was
identified which relies upon the specific reaction of primary and
secondary amines with formaldehyde to form the corresponding
Schiff's base, followed by reduction with sodium cyanoborohy-

atomic-level structure of these fibrils represents a key step in the gride [1° amine < 1° aldimine < 2° amine < 2° aldimine < 3°
Study of biochemical processes related to Alzheimer’s Disease.arnine]f1 Reaction progress at specific sites can then be ana|yzed
Unfortunately, progress toward this goal has been slow becauseyia |imited-proteolysis and MALDI mass spectrometry. Under
conventional X-ray and NMR structural methods cannot be near physiological conditions this protocol can quantitatively
applied to fibrous protein samples. In developing any structural gjkylate the amino terminus as well as exposesmino groups
model of fibrils the space groups and symmetry operators for of Jysine residues in soluble/A(Figures 1 and 2). Any hindrance
Ap monomers are important considerations. In this communica- of the alkylation in amyloid fibrils will expose site-specific

tion, data is presented which demonstrates that wheisAree

nonequivalence within individual /A molecules and monomer

in solution, the amino terminus and the side chains of both lysine agsymmetry in fibrils.

residues (16 and 28) are equally accessible for reductive alkyla-

tion. In contrast, when Ais self-assembled into fibrils, chemical

Highly purified monomeric solutioisof AS(1—40) (1) were
prepared. The samples were divided, a portion was subjected to

access to lysines 16 and 28 can be differentiated. Furthermorecontrolled-seeding” fibrilization, and the carefully assembled

fractional alkylation of lysine 28 supports the argument that the
“one-dimensional unit-cell” of an amyloid fibril contains at least
two non-equivalent A8 molecules. Together these data offer
powerful new constraints for future models of fibril architecture.
The global architecture of amyloid fibrils has been postulated
to be in the range 0f~80—-120 A in diameter, assembled from
four to five protofibrils, each containing two to thremib

protofibrils? The peptide chains are proposed to run perpendicular

to the fiber axis, with3-sheet hydrogen bonds lying parallel to
the fiber axis (crosg-structure).Subprotofibrils are thought to
be laminates of multiplg-sheets. During the past several years,

fibrils were gently isolated via centrifugatiSnMonomeric
solutions and resuspended fibrils were then subjected to reductive
alkylation” A solution of 1 was quantitatively alkylated to yield

3 (+6 methyl groups) (Figures 1 and 2). However, wHewas
pre-assembled into fibrils, the predominant products were roughly
comparable amounts oR) or (3) (AB(1—40) with +4 or +6
methyl groups added).

Other products were only seen transiefitilypothetically,
alkylation might be equally incomplete at all sites. To observe
roughly comparable amounts ofs&Ll—40) with 4 and 6 methyl
groups, the overall product ratio for 2, 4, and 6 methyl groups

several very different structural models have been proposed forshould be 14.1%:42.2%:42.2% (or 1:3r@spectiely, (for 75%

Ap fibrils.® In each of these models there is a strong effort to

overall yield)). But it is difficult to clearly resolve a MALDI peak

comply with the proposed overall diameter of the fibrils. However, of sufficient intensity corresponding to just 2 added methyl groups
some of the models are not based upon a hierarchical assemblyafter 48 h, raising the question of whether reductive alkylation

of subprotofibrils into protofibrils, and finally into fibrils. In

addition, there has been little experimental information on how
symmetry should be treated during the refinement of these models,
or as a basis for the development of new models. To specifically ;.

probe for asymmetry in A fibrils, we have been evaluating

in fibrils might be site specific.
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Figure 2. MALDI of A 3(1—-40) and its proteolysis products. Theaxis corresponds to the bottom spectrum, upper spectra are offset for display.
(Far-left) are A3(1—40) STANDARD (1), and the FIBRIL (48h)Z and3) and SOLUBLE (2 h) 8) alkylation products. The remaining spectra are all
derived from fibril alkylation reactiongLeft-middle)(4 and5) are endoproteinase Glu-C products for residugglA11) at 0 & 2h,(right-middle) (6,

7, and8) are pepsin products for residueg(A—19) at 0, 8 & 48 h(far-right) and @ and10) are pepsin products for residueg(®0—34) at 0, 2, and

48 h.

To probe for specificity, alkylated fibrils of A(1—40) 2, 3) molecules requires further characterization, and ultimately it
were dissolved in formic acid and digested with endoproteinase should be used to help define the “one-dimensional unit cell,”
Glu-C° or pepsif® (Figures 1 and 2). The resulting proteolytic  within these “beta-crystallites-?
fragments were then analyzed by MALDI to determine the extent A critically important prerequisite for this work was the
of alkylation at each site. A proteolytic fragment corresponding carefully preparation and isolation of —40) fibrils from

to A(1—11) (4) was quantitatively transformed t6)((+2 methyl monomeric solutions and defined seédisitially aggregated &
groups) after 1 h, showing that the amino termini AEL was obtained via rapid spontaneous self-assembly, relying upon
molecules are completely exposed whefi(A-40) is within incomplete dissolution remnants as seeds. However, data was

fibrils. In contrast, afte8 h of alkylation, a fragment correspond-  erratic and nonreproduciblThe clarity of the current data was
ing to A3(1-19) (6) was transformed to roughly comparable only possible using more stringently defined fibrils. It is
amounts of {) and @), (+2 and+4 methyl groups respectively),  noteworthy that in the past, qualitative markers of fibril formation,
and after 48 h of alkylation, followed by proteolysis, the only such as electron microscopy or dye binding, have provided the
product was & (+4 methyl groups). Hence, while all A benchmarks for the presence of fibrils. But one limitation of these
molecules in fibrils are exposed, the amino termini and lysine 16 methods is difficulty in calibrating the amount of amorphous or
can be kinetically differentiated. In addition, since the limited protofibrillar material that is present. It follows that the current
proteolysis shows that both the amino termini and lysine 16 are results should also lead to a chemical “benchmark” of fibril
fully alkylated, the data strongly suggest that lysine 28 is the site preparations, and perhaps allow further subclassification of
of incomplete alkylation after 48 h. This suspicion was confirmed different possible fibril morphologies.

by monitoring another proteolytic fragment corresponding fo A Finally, while this work should impact new structural models,
(20-34) (9). MALDI data shows that after only 2 h, there is it s also tempting to try to discriminate between existing models.
appreciable alkylation of lysine 28 within A1—40) fibrils. However Caution is Warranted Fibril preparations can be

However, between 8 and 48 h, alkylation of lysine 28 does not polymorphic, and data derived from different samples may detect
proceed to completion. Instead it appears to approach r?Ugmymutually exclusive structural features. Because the current
comparable amounts a(and (L0) (0 and+2 methyl groups}: preparation methods are highly stringent, the relatively well-

Hence a fraction of the lysine 28 residues are either completely gefined architecture in this work is likely to be a subset of those
inaccessible, or the reaction is much slower for that fraction of jn other preparations.

the sites, compared to the amino terminus or lysine 16, wh&n A

is within fibrils. _ _ _ Acknowledgment. Supported by NIH R29 AG13735. J.P.L. enjoyed
These data unravel new details on the architecture of amyloid yseful discussions with J. Panek, J. Straub, and M. Lachenmann.

fibrils. First, all AS(1—40) molecules are partially exposed to

solvent. Second, residues 1, 16, and 28 are chemically indistin-  supporting Information Available: Several full MALDI spectra of

guishable in solution, but clearly distinguished in fibrils. Third, proteolytic digests taken at different time-points (PDF). This material is

the data are consistent with nonequivalegtraolecules in fibrils. available free of charge via the Internet at http:/pubs.acs.org.

It follows that the structural heterogeneity between individual JAOL5735Y
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